APPROXIMATE ANALYSIS OF NATURAL CONVECTION IN
A FLAT CHANNEL WITH STABILIZED FLUID FLOW

G. N. Dul'nev and A. I. Kaidanov UDC 536.25

The boundary-layer equation is solved in approximation for stabilized flow in a channel. For-
mulas are derived for the local and mean Nusselt numbers, and the limits of their applicability
are indicated. The results are compared with the data of other investigators.

There are numerous studies dealing with heat exchange in flat and cylindrical channels. Solution
methods and research results for forced convection have been adequately discussed in [1]. Data on natural
convection can be found in individual papers [2-7].

One feature of the natural-convection problem is the complexity involved in specifying the conditions
at the channel inlet. In contrast to forced-convection problems, where the formulations are correct, in-
vestigations of natural convection have made use of various models that have not received sufficient valida-
tion and which, as we shall show, are nearly equivalent.

In almost all the natural-convection studies known to us, a channel with isothermal walls is considered;
only {7} reports experimental results for walls with constant losses to the flowing fluid.

Finally, again in contrast to forced-convection problems, for the most part both the analytic and ex~
perimental studies give the mean, rather than the local Nusselt number.

We shall consider natural convection in a flat vertical channel heated symmetrically, with an arbi-
trary distribution of wall temperature over the height (Fig. 1).

e s s In formulating the problem, we make the usual assumptions
== (11, p. 76, Assumptions 1, 2, 4, 6), while introducing the following

restrictions: a) the channel temperature field is symmetric about

8 the plane y = 0; b) the wall temperature depends solely on the longi-

tudinal coordinate: T, =Ty (x); c) the width of the channel is con-

x
giderably less than the depth (b < B); and d) the width is much less
T than the height (b < H).
\\j By virtue of restriction ¢), the plane boundary layer equations
are valid for the fluid in the channel [4]:
T p 3 39 f o pe(T; 0
] or aT T
u 7z Pty Ziog L 2)
N | ‘e T dy -
/-
Ou + 90 _ 0. 3)
dx oy
oTo y The boundary conditions are written as
Fig. 1. Configuration of channel y= =8 x>0, u=0,0=0; (4)
and basic dimensions. y=+S, x>0, T, =T, (x); )
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We assume that sufficiently far from the inlet (x = I;), the velocity profile is parabolic within the
channel, and does not depend on x. By virtue of restriction d), the length of the initial hydrodynamic sec~
tion is small as compared with the overall channel length, so that we can take I;, ~ 0 in approximation.
This assumption, which is strietly true only for a stabilized flow [1], can be written in the form

U=ty (l — %) for x>0. 8)

We find u,y from (1), multiplying it by pg and integrating over the channel volume. Integrating with
respect to y, from (3) and (4) we have
+S
R L. u o dy.
—$ oy Ox
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We now integrate with respect to x, z and use the expression (8) for the velocity:

R+ A=Al (9)
+S B H
{ Yf’[‘,dydzdx
A= 2SBH Ty Ty S0 8
1
-~ 1 16
Al =20BS | u2 |\ (1 —pPPdy—0| = 2 10b
0s [uaxj( ¥R dy J 5 PBSL (10b)
0
du s 410 BH

Relationship (9) has a simple physical interpretation: the algebraic sum of the friction force and
Archimedes force equals the change in momentum.

We let .
. VTw(x)dx
- b o~ BETe—=T)b" = _ % :
M-—GrPrF,Gr~ v ; Top= 7
Ty,—T b
1p=w‘i—~°—; Pr:i;Pe*:Pe*——; (1)
T,—T, a;
b 1
Pe= a7, U, = gu@d;: 2 Uy
@ ) 3
4]
Solving (9) for uyy, we obtain
15 vH M
hx =g o (1/1+ 5 Pr_l)“ )
or
Pe* / M
= B 12
Pr U/H_I%Opr 1)' (120)

Since the flow is stabilized, v = 0. This follows, in particular, from (8), (3), and (4).

Equations (12a, b) include the parameter ¥, which depends on T¢. We approximate the fluid tempera-
Ex_re profile in any cross section x by a polynomial of degree four, which should contain no odd powers of
y, by virtue of symmetry:

Ty =Ty + ay® + ayt. (13)
Letting v = 0 in (2) and noting that u = 0 when ¥ = 1 so that, consequently, 82Tf/8§72 = 0, we obtain

a -1 a
4 6 2



The constant a, is determined from (5). Then
5 P 1 )
Ty=Taxt o To =T [ — 1] (14)

The mean-flow-rate temperature of the fluid in the channel is

{

8‘ uTdy %9
BN 2T T,
Tm= P Tax + 175 (Tw Tax) (15)

S udy

0

1t follows from (15) that
39 / 39
T, =|Tm— —— T | s [1——1.
ax ( 175 ‘“) ( 175 ) 19)

We find the relationship Ty, = Ty, (x) from (2). We multiply both sides of the equation by dgz/ua, and
integrate with respect to v in the interval [0, 1]. Since u does not depend on x, while v = 0, after integration
with allowance for Ty, in (15), we obtain

A ATy [ 4 0T, (17)
H dx Su, Ay |1
From (14) and (16), we have
T, 8 35
L e S (Ty—Ty) = (T — T (18)
ay y_=l 5 ( w ax) 17 ( m
We can then rewrite (17) as
1 dTm + Tn=T,; o= 10 1 (19)
Q@ dx 17 Pe*

The solution for this equation under the condition (7) has been given in [1]:

T () = exp (— 03 [@ [ T (3) exp (@) dF + T, (20)

0
We find the local heat-exchange coefficient as was done in [1]:
g=o, (T, — Ty (21a)

On the basis of the Fourier law, the specific flux is

0T A 35 @21b)
q=h; W =S 17 (Ty— )
Comparing (21a) and (21b), we find
Nu,, = % ~4.12 (22)

The approximate expression (22) was obtained for any function Ty, (x) under the requirement that the
indicated restrictions are satisfied; it is only strictly valid, however, for a stabilized fluid flow with con~
stant heat-loss density. For isothermal walls, with stabilized flow Nuy = 3.77 [1]. As a consequence, for
Ty = const and q = const, Eq. (22) gives relative errors of 9 and 0%, respectively.

The average heat-exchange coefficient, referred to the inlet temperature, is found in [1-3, 5, 6]
Q= a(T, — T,) HB. | (23a)
We can write the expression for Q in a different form:
11 _ —
Q=BH 5 5" gdxdz = o BH (T, — Tm); (23b)
00
1

T= | T () dix. (23c)

P
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N s Comparing (23a) and (23b), we find

20 - - -

4 . — T

_?/‘/ Nut = Nugw; % = Lo m (24)
i 5 T,—T,
2 e w

% {(/ We now find the relationship between ¢ and ». We
G4 / M average (16) over x, and (14) over the channel volume; we
02 ;4-" then divide one of the resulting equations by the other and,
' ;// allowing for the definitions of ¥ and %, we obtain

a/ 7

1

00814 b =1— -1—‘75 ", (25)
404 s

;2 4 6 0 20 4080100 200 400600 M
From (12b) and (20), (24), (25) we can determine Nuy and

Nu as functions of the channel geometry, the physical pro-
perties of the fluid, and the wall temperature.

Fig. 2. Average Nusseltnumber as function
of M = GrPrb/H: 1) from Egs. (28), (29);

2) from [6].
Special case: the channel walls are isothermal,
T, (x) = const = ©. (26)
From (23) we have
_ 27
Th=0— (00— T, exp{— Qx),
and, consequently,
oo LR oy, LR (28)
Q Q
Solving (12b) for M, with allowance for (19) and (28) we obtain
o 1 L7 P
1
- ZE . 29
brop 17 & 1—en(—0) %)

17 Q

Equations (29} and (28), which contain the common parameter , enable us to find the relationship Nu
= Nu(M), shown in Fig. 2 (solid line) and Fig. 3 (curve a) for air (Pr = 0.72).

With Pr = 0.72, we have the following relationship for M = 0.43, with a relative error not exceeding

1%:
] o,
M=t Um0
Q 17 1 Q
while the asymptotic expression (30) is valid
No=-L M (30)
24

Let us find the limits of applicability of (28) and (29) in the region of large M. It has been shown in
[1] for Ty, = const that the conditions for temperature-profile stabilization are satisfied with an error of
less than 1% if

»Z;L > 0.055 Pe. 31
Letting Lj; = [j¢/H, we rewrite (31) as

Ly > 0.055 Pet.

If, for example, we require tha_t_iit =< 0.1, then Pe* <1.82. Solving (29) and (12b) simuitaneously for Pe*
=1.82, we obtain M = 33.2 for Lj; = 0.1. Since for gases (Pr ~ 1), the lengths of the initial thermal and
hydrodynamic sections are similar, the inequalities obtained characterize the strictness of the assumptions

(8).



8 / In the indicated range of variation in M, we would ex-
3 // pect about a 10% error in determination o_g_Nu,. In actuality,
20 Tz we can use the relationships for Nuy and Nu over a wider
/’—‘\ /// range whilt_a_lfeeg_i}_lg this accuracy. As an example, in Fig.
10 Py T 15 2. we show Nu = Nu(M) for Pr = 0.72 according to [6] (dashed
/%.——*; /< /,/7 line).
0 ( R A ip s . . .
{2 4 6 10 \ 00~ 2 M We note that if in approximating the temperature field
. N /,g we use a polynomial of degree two, we obtain the expression
-10 , ~ v
15 Nug =5 (32)
Fig. 3. Comparison of calculated and ex- for the local Nusselt number. In this case we can find Nu
perimental values Nu = Nu(M): 2) accord- =Nu(M) (curve b, Fig. 3) by solving (28) and (33) simul-
ing to [2]; 3) [3]; 5)[5]; 6) [6); T)[7]; taneously, while making allowance for (32):
oematas (08 and Gy, M= 2 Lrob ®)
’ proz 5 1—enp(—=Q)

6 Q

The results obtained by various investigators are compared in Table 1 and Fig. 3. The figure gives
curves for dpy = f(M). The relative deviations in the average Nusselt numbers (6yy,) are found from the
formula '

S = Nty 3500
Ny,
Here i indicate_s_the_rlumbered reference; ﬁﬁ.o is found from (28) and (29). We represent the results in this
form since in Nu = Nu(M) coordinates, all curves are nearly the same (Fig. 2).

Convection has been investigated in [2] for a flat channel, with allowance for the initial section, where
the temperature profiles are not established. The data are obtained on the assumption that the fluid at the
inlet is at the ambient temperature, while the velocity profile is a plane. This last assumption is not valid
and, obviously, determines the accuracy of the results. The equations of the plane boundary layer are given
in criterial form; they are solved numerically by a finite-difference method for Pr = 0.7. For small M,
the authors of [2] assume the relationship (30), and for large M (M > 10%), the asymptotic relationships

Nu=0.68 M"*. (34)
Multiplying both sides of (34) by H/b, we find
Nuy = 0.68 (GryPr)'"* (35)
which characterizes heat exchange in a single layer of height H in an unbounded medium. The results of
[2] are compared with the data of other investigators in Fig. 3 (curve 2).

Free convection in a vertical slot with isothermal walls hsil;s_been considered in [3]. The author rec-
ommends the following computational formulas for determining Nug = Nug(Mg):

1—~§— exp (——ﬂi 0)
z 4

— 2 .
Nug = = ; o= (Pey™ (36a)
3 Pr+0.75
Mg = o] N 9 — - (36b)
o | l— =4~ exp [——~ 0©
{ 3o nto P ( 4 ”

This relationship is given graphically in [3]. Figure 3 (curve 3) gives a comparison with the data of other
investigators.

When M < 1, the asymptotic relationship (30) is valid with an error of less than 1%. When M > 320,
heat exchange in the channel is almost the same as that for a single layer. Here (36a, b) yield

Nu = 0.65 M. 37)

In an experimental study of natural convective heat exchange in a flat vertical channel with isothermal
walls [5] the following empirical formula was obtained:
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TABLE 1. Comparisonof Formulas for Average I\Tu——L M exo [ 324\ 38
Nusselt Number in Channels for Large M with o4 p M ) } : (38)

Data for Single Layer When M < 4, the asymptotic representation (30) is cor-

Source l Heat-exchange rect, with an error of less than 1%, while when M
c n H
| condition > 1500, the equation
0,68 0,25 [ 2] T, =const Nu = 0.556 M*"*
0,65 0,25 [3] "
g:égﬁ 8,25 Preselm:SIStudy " is correct to within 5%. Figure 3 illustrates Eq. (38)
0,200 0,35 [ 6 " (curve 5). In [6], the experiments were carried out
81522 8152 % Zg% %:C:ng;;st with square plates, so that there could be lateral
g’gi gvgg } 3{ “ " leakage of heat by conduction, particularly for small
0,525 0,95 {10] " M. The empirical formula is
0:655 05 L3 ; 1 ;350\ ]u
0, 0,25 [12} q:COHSt m = —QE M I:] — €Xp L_—-—MM)} . (39)
When M < 7, Eq. (30) holds to within 1%, while for M > 1750, the asymptotic form
Nu=0.6M" (40)

also holds to within 1%. TFigure 3 (curve 6) illustrates Eq. (39).

An experimental investigation of the natural convection of air flows in straight and stepped short
channels has been carried out for constant heat-loss density at the walls [7]. The experimental results
were processed in criterial form. The computational formulas given in [7] for the straight channel can be
represented in the following form, after uncomplicated manipulations:

Nu = 0.6 (M)'*; M>87. (41)

We note that the average Nusselt number for stepped channels can exceed Nu for straight channels by
38%. Figure 3 (curve 7) illustrates Eq. (41).

Since when M > 10%, the channel conditions differ little from the heat-exchange conditions for a single
layer (plate), it is interesting to compare the asymptotic representations of Nu = Nu(M) with the criterial
relationship for a single layer:

mﬂ = C(GTH Pl')n.
Table 1 gives the values of ¢ and n obtained by various authors, in systematic form.

Analysis of the curves of Fig. 3 shows that the data of the various authors for Nu can differ by 30%
when 0 = M = 10%. The differences in the analytic relationships (curves a, b, 3, 5) result basically from
the choice of model; they are affected to a smaller extent by the rigor of the mathematical solution. The
spread in the experimental data is characteristic, as is the tendency to be too high as compared with most
of the results for single layers (Table 1).

The asymptotic expressions for Nu and for large M, calculated from (28), (29), are physically mean-
ingless, but the authors do not recommend that the results be used for M > 1000.

For practical determinations of m, it is most convenient to use the empirical relationships {5, 6]
based on (38), (39). Since our results are in satisfactory agreement with the data of other investigators,

we can recommend our relationships for the analysis of local heat exchange and the study of temperature
fields in channel wallg.

NOTATION
Tw is the local temperature of the channel wall;
T¢ is the local temperature of the fluid in the channel;
T, is the temperature of the fluid ahead of the channel inlet;
T,x  1s the temperature on the channel axis;
—’f'W is the average wall temperature;
Tey is the mean-~volume temperature of the fluid;
T is the mean-flow temperature of the fluid in cross-section x;
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is the average value of Ty, over the channel height;

T

H is the channel height;

b =28 is the channel width;

B is the depth of the channel;

X,V,2 are the relative coordinates;

u, v are the longitudinal and transverse velocity components;
Ugx is the velocity on the channel axis;

U, is the average velocity over a channel cross section;
Vg, Uf are the kinematic and dynamic viscosities of the fluids;
g =1/T, is the coefficient of thermal expansion of the fluid;

g is the free-fall acceleration;

Pty af, Af are the density, thermal diffusivity, and thermal conductivity of the fluid;
R is the friction force;

A is the Archimedes force;

Al is the change in momentum;

Gr is the Grashof number;

Pr is the Prandtl number;

Pe is the Peclet number;

Oy, O are the local and mean heat-exchange coefficients;
Nug, Nu are the local and average Nusselt numbers;

Q is the total heat flux dissipated by the channel wall;

@ is the temperature of the isothermal wall;

q is the density of the heat flux dissipated by the wall;

ﬁﬁs, Grg, Peg are the Nusselt, Grashof, and Peclet numbers for the controlling dimension S.

-

e =2 IS I VU L
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