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The boundary- layer  equation is solved in approximation for stabil ized flow in a channel. F o r -  
mulas are  derived for the local and mean Nusselt  numbers ,  and the limits of their applicability 
are indicated. The resul ts  are compared  with the data of other invest igators .  

There  are numerous studies dealing with heat exchange in flat and cylindrical  channels. Solution 
methods and r e sea rch  results  for  forced convection have been adequately d iscussed in [1]. Data on natural 
convection can be found in individual papers  [2-71. 

One feature of the natura l -convect ion problem is the complexity involved in specifying the conditions 
at the channel inlet. In contras t  to forced-convect ion problems,  where the formulations are cor rec t ,  in-  
vestigations of natural convection have made use of various models that have not received sufficient valida- 
lion and which, as we shall show, are  nearly equivalent. 

In almost  all the natural -convect ion studies known to us, a channel with is o thermalwal ls  is considered;  
only [7] repor ts  experimental  resul ts  for walls with constant losses to the flowing fluid. 

Finally, again in contrast  to forced-convect ion problems,  for the most  part  both the analytic and ex-  
per imental  studies give the mean, ra ther  than the local Nusselt  number.  

We shall consider  natural convection in a flat ver t ical  channel heated symmet r ica l ly ,  with an a rb i -  
t r a ry  distribution of wall t empera ture  over the height (Fig. 1). 

Fig. 1. Configuration of channel 
and basic  dimens ions. 

In formulating the problem,  we make the usual assumptions 
([1], p. 76, Assumptions 1, 2, 4, 6), while introducing the following 
res t r ic t ions :  a) the channel tempera ture  field is symmet r i c  about 
the plane y = 0; b) the wall tempera ture  depends solely on the longi- 
tudinal coordinate:  T w = Tw(X); c) the width of the channel is con- 
s lderably less than the depth (b << B); and d) the width is much tess 
than the height (b << H). 

By virtue of res t r ic t ion  c), the plane boundary layer  equations 
are  valid for  the fluid in the channel [4]: 

5u Ou d2u 
u - - +  v - -  = vt - - +  ~ g ( T / - -  To); (1) 

Ox Oy Oy 2 

OT s OT s 0 2 T~ . 
u - - - - - t - v  = a  s - ,  (2) 

Ox Oy Oy 2 

0 u  + 0 v  =0 .  (3) 
Ox Oy 

The boundary conditions are  writ ten as 

y =  = S, x > O ,  u = 0 ,  v = 0 ;  (4) 

(5) y =  •  x>O,  Tf = T w(x); 
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x 4 0 ,  ~ = 0 ,  v = 0 ;  (6) 

x .< 0, T I = T 0. (7) 

We a s s u m e  that  s u f f i c i e n t l y  f a r  f r o m  the in le t  (x >- / ih ) ,  the v e l o c i t y  p r o f i l e  is p a r a b o l i c  wi th in  the 

channe l ,  and does  not  depend  on x.  By v i r t u e  of r e s t r i c t i o n  d), the length  of the i n i t i a l  h y d r o d y n a m i c  s e e -  
l ion ts s m a l l  as c o m p a r e d  wi th  the o v e r a l l  channe l  l ength ,  so  that  we can t ake  l i h  ~ 0 in a p p r o x i m a t i o n .  
Th i s  a s s u m p t i o n ,  which  is  s t r i c t l y  t r ue  only fo r  a s t a b i l i z e d  flow [1], can be  w r i t t e n  in  the f o r m  

U = U a x ( 1 - - y  2) for x > 0 .  (8) 

We f ind  Uax f r o m  (1), m u l t i p l y i n g  i t  by pf  and i n t e g r a t i n g  o v e r  the channel  vo lume .  I n t e g r a t i n g  with 
r e s p e c t  to y,  f r o m  (3) and (4) we have  

-FS + S  + S  

S Ou '-'-S j Ov ~ 6qu 
v 7 av = eu UV_s -- " u - -  = u @. 

--S --S --S 

We now i n t e g r a t e  wi th  r e s p e c t  to x,  z and use  the e x p r e s s i o n  (8) fo r  the v e l o c i t y :  

R q- A = AI; 
4.-SBH 
S .f S T / y x  

A = 2SBHgpf (T~o -- Y0); Ts~ = - s  o 0 
2SBH ; I 

[; Az = 2~jBS % (1 --y~)2dy--o = 7 g  o~BS":x! 
0 

&t is 41,tfuo~BH 
R =  2BH~/ ~ o = - -  S 

R e l a t i o n s h i p  (9) has  a s i m p l e  p h y s i c a l  i n t e r p r e t a t i o n :  
A r c h i m e d e s  f o r c e  equa l s  the change  in m o m e n t u m .  

(9) 

(10a) 

(lOb) 

(10c) 

the a l g e b r a i c  sum of the f r i c t i o n  f o r c e  and 

We le t  
H 

= J r . - -  To vf b 
; P r = - - ;  P e * = P e * - -  ; 

T ~ -  T O a t H 

1 

P e =  uabat ; U a =  .f'u(5) dY-= 3-2 Uax. 

0 

(ii) 

Solving  (9) fo r  Uax, we obta in  

15 ~,tH ( ] / /  ~oM--1) ,  (12a) 
Uax= 8 S 2 1+ 30Pr  

o r  

pc,  M_I) /12b, 
Pr -- 5 1+ 30 Pr " 

S ince  the f low is  s t a b i l i z e d ,  v = 0. Th i s  f o l l o w s ,  in p a r t i c u l a r ,  f r o m  (8), (3), and (4). 

Equa t i ons  (12a, b) inc lude  the p a r a m e t e r  r which  depends  on Tf.  We a p p r o x i m a t e  the f lu id  t e m p e r a -  
t u r e  p r o f i l e  in any c r o s s  s e c t i o n  x by a p o l y n o m i a l  of d e g r e e  fou r ,  which shou ld  con ta in  no odd p o w e r s  of 
y,  by v i r t u e  of s y m m e t r y :  

Tl = Tax + az} 2 + a~Y ~. (I3) 

L e t t i n g  v = 0 in (2) and no t ing  that  u = 0 when y = 1 so  tha t ,  c o n s e q u e n t l y ,  aZTf/a~ z = 0, we obta in  

t 
a 4  - -  ~2- 

6 
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The constant a 2 is determined from (5). Then 

5 (Tw--Tax)(~-- 1 ) T] -~ Tax + -6- 6 -  ~4 . 

The mean- f low- ra t e  t empera tu re  of the fluid in the channel is 

1 

,f uT/dg 
Tin= o 39 (Tw --- Tax). 1 --Tax-[- 1 ~ -  

0 

(14) 

(15) 

It follows f rom (15) that 

T a x = (  Tm--39175 Tw) : (1--  17539 ) .  (16) 

We find the relat ionship T m = Tm(x ) f rom (2). We multiply both sides of the equation by ~ / u  a, and 
integrate  with r e spec t  to ~ in the interval  [0, 1]. Since u does not depend on x, while v = 0, af ter  integration 
with allowance for  T m in (15), we obtain 

1 d T m _  I a, OT' l _  . (17) 
H dx S2ua Og b-=l 

From  (14) and (16), we have 

OTj ~-=, 8 (T,~ Tax ) 35 
Oy o ~ (T~ T m 

(18) 

We can then rewr i te  (17) as 

1 dTm 140 1 (19) 
~- ~ + T l n : T ~ ;  g~-- 17 Pc* 

The solution for  this equation under  the condition (7) has been given m [1]: 

x 
~:q (x) = exp(-- ~;) [s .! TwO)exp (Qx) dx -Jr- To]. 

0 

(20) 

We find the local heat -exchange coefficient as was done in [1]: 

q= %(Tw -- Tra). (21a) 

On the basis of the Four i e r  law, the specif ic  flux is 

OTI y=s-- q = ~ t  - - ~  
)~t 35 (T~o-- ~). (21b) 
S 17 

Comparing (21a) and (21b), we find 

7O 
Nu~ = ~ 4.12. (22) 

17 

The approximate express ion  (22) was obtained for  any function Tw(x) under the requi rement  that the 
indicated re s t r i c t ions  are  sat isf ied;  it is only s t r ic t ly  valid, however ,  for  a s tabi l ized fluid flow with con-  
stant hea t - loss  density.  Fo r  i so thermal  walls,  with s tabi l ized flow Nu x = 3.77 [1]. AS a consequence,  for  
T w = const and q = const,  Eq. (22) gives re la t ive  e r r o r s  of 9 and 0%, respec t ive ly .  

The average heat-exchange coefficient ,  r e f e r r e d  to the inlet t empera tu re ,  is found in [1-3, 5, 6] 

Q :=. ct (T~, --  To) HB, (23a) 

We can wr i te  the express ion  for Q in a different  form:  
l 1 

Q = BH J'S qdxdz= %BH(T~-- Tin); (23b) 
0 0  

I 

Tin= t" Tm(x) dx. (23c) 
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o, ffTi I I 
o o, lZT -TUl l i l   -[27_LA I t 
o , o , a ~  z~ o to 20 oa 8o /06 2oo &go6oa M 

F i g .  2. A v e r a g e  N u s s e l t  n u m b e r  as  funct ion  
of M = G r P r b / H :  1) f r o m  Eqs .  (28), (29); 
2) f r o m  [6]. 

F r m n  (23) we have  

C o m p a r i n g  (23a) and (23b), we f ind 

Tw--  Tm (24) 
N u = N u , x ;  •  T w - - T o  

We now f ind  the r e l a t i o n s h i p  b e t w e e n  @ and ~ .  We 
a v e r a g e  (16) o v e r  x ,  and (14) o v e r  the channe l  vo lume ;  we 
then d iv ide  one of the r e s u l t i n g  equa t ions  by  the o t h e r  and,  
a l l owing  fo r  the de f in i t i ons  of ~ and •  we ob ta in  

!4 
q:, = 1 - - - -  • (25) 

17 

F r o m  (12b) and (20), (24), (25) we can d e t e r m i n e  Nu x and 
Nu as  func t ions  of the channe l  g e o m e t r y ,  the p h y s i c a l  p r o -  
p e r t i e s  of the f lu id ,  and the wa l l  t e m p e r a t u r e .  

S p e c i a l  e a s e :  the channe l  w a l l s  a r e  i s o t h e r m a l ,  

T~ (x) = const = O. (26) 

T m = @ - -  (O - -  To) exp ( - -  9.x), 
(27) 

and,  c o n s e q u e n t l y ,  

1 - -  exp ( - -  f})', N~ = Nu~ 1 - -  exp ( - -  .Q) (28) 
Q 

Solv ing  (12b) for M, with a l l o w a n c e  fo r  (19) and (28) we ob ta in  

14 4- ~ Pr)  
120 14 , 17 ' 

M - -  P r f~  l--7- I - -  14  1 - - e x p ( - - f ~ )  ' (29) 

17 

E q u a t i o n s  (29) and (28), which  con ta in  the c o m m o n  p a r a m e t e r  ~2, enab le  us to f ind the r e t a t i o n s h i p  Nu 
= Nu(M), shown in F i g .  2 ( so l id  l ine)  and F i g .  3 ( curve  a) fo r  a i r  ( P r  = 0.72). 

1%: 
With P r  = 0.72, we have  the fo l lowing  r e l a t i o n s h i p  fo r  M -< 0.43, with a r e l a t i v e  e r r o r  not e x c e e d i n g  

M =  
120 I4 - -  70 1 

; Nu- -  
17 17 

while the asymptotic expression (30) is valid 

Nu= 1 ~V*. (30) 
24 

Let us find the limits of applicability of (28) and (29) in the region of large M. It has been shown in 
[I] for T w = const that the conditions for temperature-profile stabilization are satisfied with an error of 

less than 1% if 

li--L >I 0.055 Pc. (31) 
b 

Letting Lit = /it/H, we rewrite (31) as 

it >I 0.055 Pc*. 

If, for example, we require that_ Lit -< 0.i, then Pe* -< 1.82. Solving (29) and (12b) simultaneously for Pc* 
= 1.82, we obtain M ~< 33.2 for Lit -< 0.i. Since for gases (Pr ~ I), the lengths of the initial thermal and 
hydrodynamic sections are similar, the inequalities obtained characterize the strictness of the assumptions 

(8). 
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O l 2 4, 6 lO a 

-t5 
Fig.  3. C o m p a r i s o n  of ca lcu la ted  and e x -  
p e r i m e n t a l v a l u e s  Nu = Nu(M): 2) a c c o r d -  
ing to [2]; 3) [3]; 5) [5]; 6) [6]; 7) [7]; 
a) f r o m  f o r m u l a s  (28) and (29); b) f r o m  
f o r m u l a s  (28) and (33). 

In the indica ted  r ange  of va r i a t ion  in M, we would e x -  
pect  about a 10% e r r o r  in de t e rmina t ion  of Nu. In ac tua l i ty ,  
we can use the r e l a t ionsh ips  fo r  Nu x and Nu ove r  a w ide r  
range  while keeping  this a c c u r a c y .  As an example ,  in Fig .  
2 we show Nu = Nu(M) fo r  P r  = 0.72 acco rd ing  to [6] (dashed 
line). 

We note that if in app rox ima t ing  the t e m p e r a t u r e  field 
we use  a po lynomia l  of deg ree  two, we obtain the e x p r e s s i o n  

Nu~ = 5 (32) 

fo r  the local  Nusse l t  n u m b e r .  In this case  we can find Nu 
= Nu(M) (curve b,  Fig.  3) by so lv ing  (28) and (33) s i m u l -  
t aneous ly ,  while m a k i n g  a l lowance  fo r  (32): 

120 I + ~ Pr 
M -- (33) 

Pr ~ 1-- 5 1 - -  exp ( - -  fl) 
6 ,q 

The r e su l t s  obtained by var ious  inves t iga to r s  a r e  c o m p a r e d  in Table  1 and Fig.  3. The f igure  gives  
cu rves  fo r  5Nu = f(M). The re l a t ive  devia t ions  in the a v e r a g e  Nusse l t  n u m b e r s  (6Nu) a r e  found f r o m  the 
f o r m u l a  

6Nu-- Nui--Nu~ 100%. 
Nu o 

Here  i indica tes  the n u m b e r e d  r e f e r e n c e ;  Nu 0 is found f r o m  (28) and (29). We r e p r e s e n t  the r e su l t s  in this 
f o r m  s ince  in Nu = Nu(M) c oo rd i na t e s ,  all cu rves  a r e  n e a r l y  the s a m e  (Fig. 2). 

Convect ion  has been  inves t iga ted  in [2] f o r  a f lat  channel ,  with a l lowance  fo r  the init ial  sec t ion ,  w h e r e  
the t e m p e r a t u r e  p ro f i l e s  a r e  not e s t ab l i shed .  The data  a r e  obta ined on the a s s u m p t i o n  that the f luid at the 
inlet is at the ambien t  t e m p e r a t u r e ,  while  the ve loc i ty  p rof i l e  is a plane.  This las t  a s sumpt ion  is not val id  
and, obvious ly ,  d e t e r m i n e s  the a c c u r a c y  of the r e s u l t s .  The equat ions  of the plane boundary  l aye r  a re  given 
in c r i t e r i a l  f o r m ;  they a re  so lved  n u m e r i c a l l y  by a f i n i t e -d i f f e r ence  method  fo r  P r  = 0.7. F o r  sma l l  M, 
the au thors  of [2] a s s u m e  the r e l a t ionsh ip  (30), and fo r  l a rge  M (M > 103), the a s y m p t o t i c  r e la t ionsh ips  

N-u = 0.68 M I/4 . (34) 

Mult iplying both s ides  of (34) by H/b ,  we find 

Nun = 0.68 ( G r , q P r / / 4  , (35) 

which c h a r a c t e r i z e s  heat  exchange  in a s ingle  l aye r  of height  H in an unbounded med ium.  The r e su l t s  of 
[2] a re  c o m p a r e d  with the data  of o the r  i nves t i ga to r s  in Fig.  3 (curve 2). 

F r e e  convect ion  in a ve r t i ca l  s lot  with i s o t h e r m a l  walls  has  been c o n s i d e r e d  in [3]. The author  r e c -  
o m m e n d s  the fol lowing computa t iona l  f o r m u l a s  f o r  d e t e r m i n i n g  Nu S = Nus(Ms):  

1-- 8 exp - - - -  
n 2 4 

N u  s -- ; ~ = (Pe~,)-l; (36a) 

3 Pr q-- 0.75 
M s =  [ 1 3 2 3 c ~  ( 32 ) ]  (36b) Pra  ~ 1 - - ~ - - + - - - -  exp - - - - -  cr 

n4a 4 

This r e l a t ionsh ip  is given g raph ica l ly  in [3]. F i g u r e  3 (curve 3) gives  a c o m p a r i s o n  with the data  of o ther  
i n v e s t i g a t o r s .  

When M < 1, the a s y m p t o t i c  r e l a t ionsh ip  (30) is val id  with an e r r o r  of l ess  than 1%. When M > 320, 
heat  exchange  in the channel  is a l m o s t  the s a m e  as that fo r  a s ingle  l aye r .  H e r e  (36a, b) y ie ld  

NU = 0,65 ~ / ~ 1 / 4  (37) 

In an expe r imen ta l  s tudy of na tu ra l  convec t ive  hea t  exchange in a flat  ve r t i ca l  channel  with i s o t h e r m a l  
wal ls  [5] the fol lowing e m p i r i c a l  f o r m u l a  was  obtained:  
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TABLE 1. Comparison of Formulas  for Average 
Nusselt  Number in Channels for  Large  M with 
Data for Single Layer  

c n Source Heat-exchange 
condition 

0,68 
0,65 
4,t2 
0,566 
0,600 
0,600 
0,585 
0,55 
0,54 
0,525 
0,52 
0,625 

0,25 
0,25 
0 
0,25 
0,25 
0,25 
0,25 
0,25 
0,25 
0,25 
0,25 
0,25 

[ 21 
[ al 

Present study 
t 51 
[ 61 
[ 71 
[ Sl 
[ 41 
[ 91 
[10l 
1111 
[121 

Tw=const 

q=const 
Tvj=const 

q=const 

When M < 4, the asymptot ic  representa t ion (30) is c o t -  
reel ,  with an e r r o r  of less than 1%, while when M 
> 1500, the equation 

Nt--1 = 0.556 M 1'4 

is co r rec t  to within 5%. Figure  3 i l lustrates Eq. (38) 
(curve 5). In [6], the experiments were ca r r i ed  out 
with square plates,  so that there could be lateral  
leakage of heat by conduction, par t icu lar ly  for small  
M. The empir ica l  formula  is 

--Nu= 2~1 M l- -exp - -  �9 (39) 

When M < 7, Eq. (30) holds to within 1%, while for M > 1750, the asymptot ic  form 

N~ = 0,6 M 114 (40) 

also holds to within 1%. Figure 3 (curve 6) i l lustrates Eq. (39). 

An experimental  investigation of the natural convection of air  flows in s traight  and stepped short  
channels has been ca r r i ed  out for constant hea t - loss  density at the walls [7]. The experimental  results  
were  p rocessed  in c r i te r ia t  form.  The computational formulas  given in [7] for the s traight  channel can be 
represented  in the following form,  after  uncomplicated manipulations: 

N-u = 0,6 (M//4 ; M > 87. (41) 

We note that the average Nusselt  number for stepped channels can exceed Nu for straight  channels by 
38%. Figure  3 (curve 7) i l lustrates  Eq. (41). 

Since when M > 10 ~, the channel conditions differ little f rom the heat-exchange conditions for a single 
layer  (plate), it is interest ing to compare  the asymptotic  representat ions  of Nu = Nu(M) with the cr i te r ia l  
relat ionship for a single Iayer:  

Nun = c (Grn Pr)". 

Table 1 gives the values of c and n obtained by various authors,  in sys temat ic  form. 

Analysis of the curves of Fig. 3 shows that the data of the various authors for Nu can differ by 30% 
when 0 _< M -< 103. The differences in the analytic relat ionships (curves a, b, 3, 5) result  basical ly f rom 
the choice of model;  they are affected to a smal le r  extent by the r igor  of the mathematical  solution. The 
spread  in the experimental  data is charac te r i s t i c ,  as is the tendency to be too high as compared with most  
of the results  for  single layers  (Table 1). 

The asymptot ic  express ions  for Nu and for large M, calculated from (28), (29), are  physically mean-  
ingless,  but the authors do not recommend that the results  be used for  1~I > 1000. 

For  pract ica l  determinations of Nu, it is mos t  convenient to use the empir ica l  relationships [5, 6] 
based on (38), (39). Since our resul ts  are  in sa t i s fae tory  agreement  with the data of other invest igators ,  
we can recommend  our relat ionships for the analysis of local heat exchange and the study of tempera ture  
fields in channel walls. 

W w 

Tf 
To 
Tax 
Tw 
Tfv 
Tm 

N O T A T I O N  

is the local tempera ture  of the channel wail; 
is the local tempera ture  of the fluid in the channel; 
is the tempera ture  of the fluid ahead of the channel inlet; 
is the tempera ture  on the channel axis; 
is the average wall t empera ture ;  
is the mean-volume tempera ture  of the fluid; 
is the mean-f low tempera ture  of the fluid in c ro s s - s ec t i on  x; 
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Ym 
H 

b = 2S 

B 

x, y, z 

U, V 

Uax 

U a 

vf, pf 
= 1/To 

g 

pf,  af, ~f 
R 
A 
AI 
Gr 
P r  
Pe 

~ x , ~  
Nux, Nu 
Q 
| 

q 

Nu S, Gr  S, Pe  S 

is the ave rage  value of T m over  the channel height; 
is the channel height; 
is the channel width; 
is the depth of the channel; 
a re  the re la t ive  coordinates ;  
a re  the longitudinal and t r a n s v e r s e  veloci ty components ;  
is the veloci ty  on the channel axis;  
is the ave rage  veloci ty  over  a channel c ro s s  section;  
a re  the k inemat ic  and dynamic  v i scos i t i es  of the fluids; 
is the coefficient  of t he rma l  expansion of the fluid; 
is the f r e e - f a l l  acce le ra t ion ;  
a re  the densi ty,  t he rm a l  diffusivity,  and the rma l  conductivity of the fluid; 
is the fr ic t ion fo rce ;  
is the Arch imedes  force ;  
is the change in momen tum;  
is the Grashof  number ;  
is the Prandt l  number ;  
is the Pee le t  number ;  
a re  the local and mean hea t -exchange  coeff ic ients ;  
a re  the local and ave rage  Nusse l t  numbers ;  
is the total heat  flux d iss ipa ted  by the channel wail; 
is the t e m p e r a t u r e  of the i so the rma l  wail;  
is the density of the heat flux d iss ipa ted  by the wall; 
a re  the Nussel t ,  Grashof ,  and Peeler  numbers  for  the control l ing dimension S. 
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